Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects

Author:

Liu Liangyun1ORCID,Zhang Xiao1,Gao Yuan1,Chen Xidong1,Shuai Xie1,Mi Jun1

Affiliation:

1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Land-cover mapping is one of the foundations of Earth science. As a result of the combined efforts of many scientists, numerous global land-cover (GLC) products with a resolution of 30 m have so far been generated. However, the increasing number of fine-resolution GLC datasets is imposing additional workloads as it is necessary to confirm the quality of these datasets and check their suitability for user applications. To provide guidelines for users, in this study, the recent developments in currently available 30 m GLC products (including three GLC products and thematic products for four different land-cover types, i.e., impervious surface, forest, cropland, and inland water) were first reviewed. Despite the great efforts toward improving mapping accuracy that there have been in recent decades, the current 30 m GLC products still suffer from having relatively low accuracies of between 46.0% and 88.9% for GlobeLand30-2010, 57.71% and 80.36% for FROM_GLC-2015, and 65.59% and 84.33% for GLC_FCS30-2015. The reported accuracies for the global 30 m thematic maps vary from 67.86% to 95.1% for the eight impervious surface products that were reviewed, 56.72% to 97.36% for the seven forest products, 32.73% to 98.3% for the six cropland products, and 15.67% to 99.7% for the six inland water products. The consistency between the current GLC products was then examined. The GLC maps showed a good overall agreement in terms of spatial patterns but a limited agreement for some vegetation classes (such as shrub, tree, and grassland) in specific areas such as transition zones. Finally, the prospects for fine-resolution GLC mapping were also considered. With the rapid development of cloud computing platforms and big data, the Google Earth Engine (GEE) greatly facilitates the production of global fine-resolution land-cover maps by integrating multisource remote sensing datasets with advanced image processing and classification algorithms and powerful computing capability. The synergy between the spectral, spatial, and temporal features derived from multisource satellite datasets and stored in cloud computing platforms will definitely improve the classification accuracy and spatiotemporal resolution of fine-resolution GLC products. In general, up to now, most land-cover maps have not been able to achieve the maximum (per class or overall) error of 5%–15% required by many applications. Therefore, more efforts are needed toward improving the accuracy of these GLC products, especially for classes for which the accuracy has so far been low (such as shrub, wetland, tundra, and grassland) and in terms of the overall quality of the maps.

Funder

Chinese Academy of Sciences

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3