Wind-Storage Combined Virtual Inertial Control Based on Quantization and Regulation Decoupling of Active Power Increments

Author:

Ma Dezhi,Li Wenyi

Abstract

With the increasing proportion of wind turbines in power grids, they are required to have capabilities of active and efficient virtual inertial response to maintain grid frequency stability. However, the virtual inertial control methods currently used in doubly-fed induction generator (DFIG) units suffer from a secondary frequency drop (SFD) problem. Although the SFD can be inhibited by reducing the active power support strength of the DFIG units during inertia response, it will undoubtedly weaken the virtual inertia of the units. Therefore, how to eliminate the SFD while increasing the virtual inertia of the units is a worthy issue for studying. To solve this issue, a wind-storage combined virtual inertial control system based on quantization and regulation decoupling of active power increments is proposed in this paper. First, by setting the parameters of a proportional–differential (P-D) algorithm, the total active power increments required for virtual inertial response are quantified at the DFIG level. Secondly, a curve-shifting method based on the rate of change of frequency is adopted to adjust the active power output of the DFIG units. Finally, a battery energy storage system (BESS) is used to compensate for the power shortages of the units according to the quantized value of the active power increments. Simulations show that the control method can not only eliminate SFD but also effectively increase the system’s virtual inertia.

Funder

INNER MONGOLIA ELECTRIC POWER COMPANY TECHNOLOGY PROJECT, China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3