Optimal capacity configuration of the wind-storage combined frequency regulation system considering secondary frequency drop

Author:

Li Dongdong,Wan Rui,Xu Bo,Yao Yin,Dong Nan,Zhang Xianming

Abstract

With wind power integrated into the power system on a large scale, the system has become vulnerable to the frequency stability issue. The battery energy storage system (BESS) is considered the key solution to improving the system frequency regulation performance due to its fast response ability. Furthermore, the construction of wind-storage combined frequency regulation systems has been developed for many years, in which the optimal capacity configuration of the wind-storage system is getting more attention. However, the secondary frequency drop (SFD) caused by wind turbines (WTs) participating in primary frequency regulation (PFR) is neglected in most existing capacity configurations, which is worthy of further study. In this paper, the optimal capacity of the wind-storage combined frequency regulation system is studied from the perspective of SFD. The time-domain expressions of two-stage system frequency response considering SFD are derived based on the wind-storage combined frequency regulation model. Next, considering the technical and economic characteristics of wind-storage combined frequency regulation, an optimization model of the energy storage capacity configuration is established with the objective of minimizing the sum of the maximum frequency deviations in two stages and the energy storage cost. The optimization model is solved by the multi-objective salp swarm algorithm (MSSA) to obtain the setting value of wind-storage combined frequency regulation parameters and the optimal energy storage capacity. The effectiveness of the proposed method is verified in MATLAB. The simulation results show that the proposed model can effectively improve the frequency regulation effect of the system and ensure the optimal capacity configuration with better economy.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference41 articles.

1. RoCoF restrictive planning framework and wind speed forecast informed operation strategy of energy storage system;Akram;IEEE Trans. Power Syst.,2021

2. Dynamic performance evaluation of grid-connected hybrid renewable energy-based power generation for stability and power quality enhancement in smart grid;Amir;Front. Energy Res.,2022

3. Optimal planning of energy storage in wind integrated systems considering frequency stability;Bera,2021

4. Engineering energy storage sizing method considering the energy conversion loss on facilitating wind power integration;Cao;IET Gener. Transm. Distrib.,2019

5. Optimal planning of primary frequency regulation capacity of wind-storage combined systems;Chen,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3