Towards Optimized ARMGs’ Low-Carbon Transition Investment Decision Based on Real Options

Author:

Yang Ang,Meng Xiangyu,He He,Wang LiangORCID,Gao Jing

Abstract

As a critical node of the global transportation network, ports have great potential in promoting transportation emission reduction. Promoting the low-carbon transition of ports by using clean energy is effective. Using hydrogen energy in automated container terminals (ACTs) has become popular in port emission-reduction research. The research object is the main port equipment—the automated rail-mounted container gantry crane (ARMG). This research designs a staged investment decision-making scheme for ARMGs’ hydrogen energy transition. The Internet of Things (IoT) architecture in ACTs collects ARMG equipment operation and carbon emission data. It provides a basis for data acquisition in ARMGs’ hydrogen energy transition. Furthermore, ports can adopt big data technology to analyze the correlation between equipment operation and carbon emissions. Finally, the digital twin platform will visualize the ARMG equipment operation and carbon emission behavior to remote operators. These advanced technologies can achieve status monitoring and simulation prediction, which will support ARMGs’ hydrogen energy transition. However, the ARMGs’ hydrogen energy transition has a long cycle, large investment, and strong variability. Ports should make staged investment decisions based on the digital twin platform’s status monitoring and simulation prediction analysis results. Therefore, this research establishes an optimization model for ARMGs’ low-carbon transition investment decision based on the real options method, and analyzes the staged investment scale and timing of ARMGs’ hydrogen energy transition. The results provide a popularized decision-making scheme for the low-carbon transition of ports’ equipment, which could facilitate the low-carbon transition of ports’ equipment.

Funder

Natural Science Foundation of Liaoning Province

the Educational Department of Liaoning Province for the Colleges and Universities

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3