A Novel Hexagonal Beam Steering Electrowetting Device for Solar Energy Concentration

Author:

Khan IftekharORCID,Castelletto StefaniaORCID,Rosengarten Gary

Abstract

Traditional tracking devices for solar energy applications have several disadvantages, such as bulky mechanical structure, large wind loads, and ease of misalignment. This study aims to design a flat, thin, and adaptive beam steering device to eliminate these drawbacks. A proof of concept device was fabricated to demonstrate this design. The novelty of the proof of concept device is the hexagonal structure of the electrowetting cell design. The hexagonal cell was dosed with two immiscible liquids with different refractive indices. The hypothesis of this design is that by deforming the liquid shape with the application of voltage, light can be steered and concentrated for solar energy applications. A maximum contact angle change of 44° was observed with the application of 26 V to one of the electrodes of the hexagonal cell. The device demonstrated a 4.5° change of laser beam path with only a 0.2 refractive index difference of the liquids. The 3D simulation model developed in this study shows that a tilted and flat interface can be achieved using higher dielectric constant dielectric materials. The device can facilitate the planer steering and concentration of sunlight for rooftop applications without moving mechanical parts.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3