Surface Wear in Hadfield Steel Castings DOPED with Nitrided Vanadium

Author:

Vdovin Konstantin,Pesin AlexanderORCID,Feoktistov Nikolay,Gorlenko Dmitri

Abstract

This paper examines possible industrial applications of high manganese steel and the feasibility of its inoculation with a new ferroalloy, vanadium nitride. The abrasive and impact-abrasion surface wear experienced by castings has a classical pattern: microcutting—i.e., the deformation twinning of surface layers. Ferrovanadium nitride enhances the surface resistance of castings both as a cast and as thermally treated. A fine grain structure is formed in the surface layers, specifically layers in direct contact with abrasive particles. The deformation twins that are present at the solid solution grain boundaries tend to change their orientation and characteristics. The impact-abrasion wear also leads to hardened layer formation at the working surface due to deformation twinning. The carbides (nitrides) present in the surface wear do not produce any significant impact on the process of deformation twinning. As the wear line extends deeper into the casting surface, the carbides and nitrides are ripped out and cavities occur in the wearing zone. The wear is controlled by the solidification rate. Thus, at lower rates a hardened layer is formed, which accommodates adjacent areas with differing twin characteristics, such as orientation and spacing.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference19 articles.

1. Review of results of investigation aimed at improvement of properties of castings made from high manganese steel;Sinitskyi;Theor. Technol. Steelmak.,2016

2. High Manganese Steel;Davydov,1979

3. On the effect of the chemical composition of metal on the heat treatment regimes applied for 110G13L steel castings;Chumanov;Bull. State Ural State Univ.,2012

4. Cast Alloys and Their Foreign Counterparts;Chernyshev,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3