Affiliation:
1. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China
2. School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
3. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Xianyang 712100, China
4. Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Xianyang 712100, China
Abstract
Knowledge of plant photosynthesis, biomass, and stress resistance could contribute to exploring the growth and restoration of vegetation. However, the response of these plant traits to plant–soil interactions at different successional stages remains poorly understood, which limits the understanding of secondary succession. A greenhouse experiment was designed to test the effects of rhizosphere soils collected from early- (EarlySoil), mid- (MidSoil), and late-successional (LateSoil) plant communities on plant traits of early-, mid-, and late-successional species (EarlySp, MidSp, and LateSp, respectively). We found that plant traits reacted in a specific direction to plant–soil interactions at different successional stages. Specifically, compared with treatments of plants growing in their own soil, the net photosynthetic rate and single-photon avalanche diode significantly increased in LateSp–EarlySoil (treatment of plants growing in soil) (20%–31%) and LateSp–MidSoil (10%–18%); the maximum quantum efficiency of photosystem II increased in MidSp–EarlySoil (1%) and LateSp–MidSoil (4%); belowground soluble sugar concentrations decreased in LateSp–EarlySoil (33%) and LateSp–MidSoil (45%); leaf, stem, and root biomass increased in MidSp–EarlySoil (76%–123%), LateSp–EarlySoil (180%–342%), and LateSp–MidSoil (83%–137%), and in turn they decreased in EarlySp–MidSoil (40%–73%) and EarlySp–LateSoil (53%–67%). The results indicated that soil conditioned by pre-successional species (early- or mid-successional species) would be conducive to plant functional traits of subsequent successional species (mid- or late-successional species). Constrained redundancy analysis and path analysis suggested that water-soluble ammonium N, total N, and available N concentrations were key soil factors affecting early-, mid-, and late-successional species, respectively. Our findings confirm the directionality of succession and provide new information for plant population dynamics during secondary succession.
Funder
National Natural Science Foundation of China
PhD Start-up Fund of Xi’an University of Science and Technology
Shaanxi Science Fund for Distinguished Young Scholars
Scientific and Technological Innovation Team Program of Innovation Talents Promotion Plan