Plant–Soil Feedback of Companion Species during Grassland Community Succession

Author:

Zhang Li1,Zhang Linhui1,Huang Lulu1,Zhou Huiling1,Xue Sha2,Wang Minggang3ORCID,Xu Hongwei1

Affiliation:

1. College of Forestry, Sichuan Agricultural University, Chengdu 611130, China

2. State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Xianyang 712100, China

3. The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China

Abstract

The responses of dominant species to plant–soil feedback (PSF) are well established; however, the changes in the PSF of companion species remain unclear. This study aims to assess the direction and intensity of PSF, determine the main factors influencing it, and interpret the ecological significance of PSF in companion species within the context of grassland community succession. Three typical companion species, namely Artemisia sacrorum, Artemisia capillaris, and Artemisia giraldii, were planted in soils at three grassland community succession stages (early, middle, and late) on the Loess Plateau. Our results indicate that during both plant growth periods, the shoot biomass of A. sacrorum, A. capillaris, and A. giraldii in early- and late-stage soils was higher than that in the middle-stage soil, suggesting consistent growth of the three companion species during the two growth periods. However, plant growth simultaneously led to a reduction in soil nutrient content and microbial biomass, resulting in an overall decrease in the biomass of the three species, indicating a negative PSF effect in companion species. In conclusion, the negative PSF observed in all three associated species explains the temporary dominance of companion species during succession. This study enhances our understanding of the mechanisms driving PSF in community succession.

Funder

Shaanxi Science Fund for Distinguished Young Scholars

Shaanxi Province Innovation Capability Support Program Innovative Talent Promotion Program

Ecological Restoration Innovation Team of the Loess Plateau

Open Fund for the Key Lab of Land Degradation and Ecological Restoration in northwestern China of Ningxia University

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3