Complexity Analysis and Stochastic Convergence of Some Well-known Evolutionary Operators for Solving Graph Coloring Problem

Author:

Marappan RajaORCID,Sethumadhavan Gopalakrishnan

Abstract

The graph coloring problem is an NP-hard combinatorial optimization problem and can be applied to various engineering applications. The chromatic number of a graph G is defined as the minimum number of colors required to color the vertex set V(G) so that no two adjacent vertices are of the same color, and different approximations and evolutionary methods can find it. The present paper focused on the asymptotic analysis of some well-known and recent evolutionary operators for finding the chromatic number. The asymptotic analysis of different crossover and mutation operators helps in choosing the better evolutionary operator to minimize the problem search space and computational complexity. The choice of the right genetic operators facilitates an evolutionary algorithm to achieve faster convergence with lesser population size N through an adequate distribution of promising genes. The selection of an evolutionary operator plays an essential role in reducing the bounds for minimum color obtained so far for some of the benchmark graphs. This research also focuses on the necessary and sufficient conditions for the global convergence of evolutionary algorithms. The stochastic convergence of recent evolutionary operators for solving graph coloring is newly analyzed.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference66 articles.

1. A Textbook of Graph Theory;Balakrishnan,2000

2. Solution to Graph Coloring Using Genetic and Tabu Search Procedures

3. Computers and Intractability: A Guide to the Theory of NP-Completeness;Garey,1979

4. Noise Reduction in VLSI Circuits using Modified GA Based Graph Coloring;Maitra;Int. J. Control Autom.,2010

5. Study on efficient channel assignment method using the genetic algorithm for mobile communication systems

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3