COMPUTATIONAL COMPLEXITY EVALUATION OF A GENETIC ALGORITHM

Author:

,Pyrih Ya.ORCID

Abstract

The article is devoted to the estimation of computational complexity of a genetic algorithm as one of the key tools for solving optimisation problems. The theoretical aspects of computational complexity of algorithms and the interrelation of elements of a genetic algorithm are considered. The main types of computational complexity of algorithms are described: time, simple and asymptotic. Five basic rules for calculating the asymptotic complexity are given. A mathematical apparatus for estimating the asymptotic complexity of a genetic algorithm is presented, which takes into account the costs of forming the initial population and performing evolution. Evolution occurs through iterations, during which generations of individuals are subjected to certain operations in order to find an optimal solution (crossing, mutation, chromosome decoding, etc.). GA, as a global search algorithm, is considered to find the optimal path without getting stuck in local minima. To assess the computational complexity of GA, we consider solving the traveling salesman problem (TSP) for 28 cities of Ukraine using a modified TSPLIB library and the DEAP platform created in the Python programming language. A block diagram of the GA is presented, the main elements of which are the tournament selection operator, the ordered crossover operator, and the inversion mutation operator. The influence of the population size and the number of generations on the asymptotic complexity of the genetic algorithm in solving the TSP problem is studied. The study considered changing the size of the GA population from 50 to 500 with a step of 50, while for each such value four sets of the number of generations were modelled: from 50 to 200 with a step of 50. Based on the obtained results, we show a linear dependence of the GA execution time on the size of the considered input data. It is shown that the smallest time complexity of the presented GA for the given TSP problem is 0.33848 seconds with a population size of 50 and a similar number of generations, while the largest value is 3.752734 seconds with a population size of 500 and a number of generations of 200. The obtained results can be used to optimise the performance of a GA in the TSP problem.

Publisher

Lviv Polytechnic National University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SEARCH FOR A DATA TRANSMISSION ROUTE IN A WIRELESS SENSOR NETWORK USING A GENETIC ALGORITHM;Information and communication technologies, electronic engineering;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3