Monitoring Vehicle Pollution and Fuel Consumption Based on AI Camera System and Gas Emission Estimator Model

Author:

Rodriguez Valido Manuel,Gomez-Cardenes OscarORCID,Magdaleno Eduardo

Abstract

Road traffic is responsible for the majority of air pollutant emissions in the cities, often presenting high concentrations that exceed the limits set by the EU. This poses a serious threat to human health. In this sense, modelling methods have been developed to estimate emission factors in the transport sector. Countries consider emission inventories to be important for assessing emission levels in order to identify air quality and to further contribute in this field to reduce hazardous emissions that affect human health and the environment. The main goal of this work is to design and implement an artificial intelligence-based (AI) system to estimate pollution and consumption of real-world traffic roads. The system is a pipeline structure that is comprised of three fundamental blocks: classification and localisation, screen coordinates to world coordinates transform and emission estimation. The authors propose a novel system that combines existing technologies, such as convolutional neural networks and emission models, to enable a camera to be an emission detector. Compared with other real-world emission measurement methods (LIDAR, speed and acceleration sensors, weather sensors and cameras), our system integrates all measurements into a single sensor: the camera combined with a processing unit. The system was tested on a ground truth dataset. The speed estimation obtained from our AI algorithm is compared with real data measurements resulting in a 5.59% average error. Then these estimations are fed to a model to understand how the errors propagate. This yielded an average error of 12.67% for emitted particle matter, 19.57% for emitted gases and 5.48% for consumed fuel and energy.

Funder

Canarian Agency for Research, Innovation and Information Society

Catalina Ruiz training aid program for research personnel of the Regional Ministry of Economy, Knowledge, and Employment

European Social Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3