Abstract
Ego-motion estimation is a foundational capability for autonomous combine harvesters, supporting high-level functions such as navigation and harvesting. This paper presents a novel approach for estimating the motion of a combine harvester from a sequence of stereo images. The proposed method starts with tracking a set of 3D landmarks which are triangulated from stereo-matched features. Six Degree of Freedom (DoF) ego motion is obtained by minimizing the reprojection error of those landmarks on the current frame. Then, local bundle adjustment is performed to refine structure (i.e., landmark positions) and motion (i.e., keyframe poses) jointly in a sliding window. Both processes are encapsulated into a two-threaded architecture to achieve real-time performance. Our method utilizes a stereo camera, which enables estimation at true scale and easy startup of the system. Quantitative tests were performed on real agricultural scene data, comprising several different working paths, in terms of estimating accuracy and real-time performance. The experimental results demonstrated that our proposed perception system achieved favorable accuracy, outputting the pose at 10 Hz, which is sufficient for online ego-motion estimation for combine harvesters.
Funder
Jiangsu Province Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献