Application of a Bayesian Network Based on Multi-Source Information Fusion in the Fault Diagnosis of a Radar Receiver

Author:

Liu Boya,Bi Xiaowen,Gu Lijuan,Wei Jie,Liu Baozhong

Abstract

A radar is an important part of an air defense and combat system. It is of great significance to military defense to improve the effectiveness of radar state monitoring and the accuracy of fault diagnosis during operation. However, the complexity of radar equipment’s structure and the uncertainty of the operating environment greatly increase the difficulty of fault diagnosis in real life situations. Therefore, a Bayesian network diagnosis method based on multi-source information fusion technology is proposed to solve the fault diagnosis problems caused by uncertain factors such as the high integration and complexity of the system during the process of fault diagnosis. Taking a fault of a radar receiver as an example, we study 2 typical fault phenomena and 21 fault points. After acquiring and processing multi-source information, establishing a Bayesian network model, determining conditional probability tables (CPTs), and finally outputting the diagnosis results. The results are convincing and consistent with reality, which verifies the effectiveness of this method for fault diagnosis in radar receivers. It realizes device-level fault diagnosis, which shortens the maintenance time for radars and improves the reliability and maintainability of radars. Our results have significance as a guide for judging the fault location of radars and predicting the vulnerable components of radars.

Funder

Hubei Key Laboratory of Intelligent Robot

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3