An optimized sparse deep belief network with momentum factor for fault diagnosis of radar transceivers

Author:

Shi JiantaoORCID,Li XianfengORCID,Chen ChuangORCID

Abstract

Abstract Transceiver is a crucial component of radar system that allows for the regulation of signal phase and amplitude as well as the amplification of both transmitted and received signals. Its operational efficiency has a significant impact on the whole dependability of the radar system. To ensure the safe and reliable operation of the radar system, an optimized sparse deep belief network with momentum factor is developed to diagnose potential faults of radar transceivers. Firstly, a momentum term is added into the parameter update to enhance the anti-oscillation ability of model parameters in training, while a sparse regular term is integrated into the deep belief network to prevent the model from overfitting. Secondly, to automatically configure the model hyper-parameters, a hybrid sine cosine algorithm (HSCA) with dynamic inertia weight and adaptive strategies is proposed. Thus, an effective diagnostic model named HSCA-MS-DBN is formed by combining sparse deep belief network with momentum factor and HSCA. The efficiency of the proposed HSCA-MS-DBN model is confirmed using an actual-world radar transceiver dataset, and the findings from experiments reveal that this model surpasses multiple prominent intelligent models.

Funder

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3