Study of Internal Flow Heat Transfer Characteristics of Ejection-Permeable FADS

Author:

Yang Kai1,Shi Tianhao1,Ming Tingzhen12ORCID,Wu Yongjia12,Chen Yanhua3,Yu Zhongyi3,Ahmadi Mohammad Hossein4ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

2. Hainan Institute, Wuhan University of Technology, No. 5 Chuangxin Road, Sanya 572024, China

3. CITIC General Institute of Architectural Design and Research CO., Ltd., Wuhan 430014, China

4. Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran

Abstract

A fabric air dispersion system (FADS) is a type of flexible air supply system that integrates air transmission and distribution. This innovative system has the potential to address common issues such as uneven air supply and surface condensation, which are often associated with traditional ventilation systems. Existing numerical simulation studies on fiber ducts have encountered problems with mesh generation and simulation accuracy. This work develops a simulation method based on the equivalent discounting method to overcome these challenges. The proposed method is utilized to investigate the flow and heat transfer characteristics inside fiber ducts while also examining the effects of various shapes and opening configurations. The findings indicate that the temperature rise inside the duct is positively correlated with flow rate, with higher temperatures resulting from faster flow speeds. The temperature rise of FADS with four rows of openings increased by 0.4 k compared to other opening methods. Additionally, the study shows that increasing the number of rows of openings in the fiber duct leads to a faster decay of flow velocity and a higher temperature rise. At the same time, increasing the number of openings in the duct slightly reduces flow velocity while slightly increasing the temperature rise. The presence of more fiber duct elbows leads to greater local resistance, which accelerates the decay of the flow velocity and increases the temperature rise. Compared to the “1”-shaped FADS, the temperature rises of the “L”-shaped and “U”-shaped systems have increased by 0.9 k and 2.9 k, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3