A New Type in TRNSYS 18 for Simulation of Borehole Heat Exchangers Affected by Different Groundwater Flow Velocities

Author:

Antelmi Matteo12ORCID,Turrin Francesco3ORCID,Zille Andrea1,Fedrizzi Roberto3

Affiliation:

1. Inewa s.r.l., NOI Techpark Südtirol/Alto Adige, Via Alessandro Volta 13, 39100 Bolzano, Italy

2. Dipartimento di Ingegneria Civile Ambientale, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy

3. EURAC Research, NOI Techpark Südtirol/Alto Adige, Via Alessandro Volta 13, 39100 Bolzano, Italy

Abstract

Heating ventilating air-conditioning (HVAC) systems have been increasingly widespread in Italy: they can exploit renewable energies, are energy efficient systems, do not directly consume fossil fuels, and in the post-pandemic era, have also been subject to incentive processes by the Italian government. In South Tyrol, subject to harsh climates in both the winter and summer seasons, ground-source heat pump (GSHP) systems can be an excellent solution for the air conditioning of buildings. Unfortunately, too often, the design of HVAC systems with borehole heat exchangers (BHEs) is not adequate, and therefore, an innovative and expeditious numerical solution is proposed. A new numerical element (named Type285), written in Fortran code, was developed for TRNSYS 18 and able to implement the main features of BHEs and the surrounding aquifer. Type285 was compared with numerical models present in the literature (using hydrogeological software such as MODFLOW) and validated with the experimental data. The demonstration of the exchanged energy increase between the BHE and subsoil due to the increase in the groundwater flow velocity was carried out and evaluated. The choice to simulate BHE in TRNSYS using Type285 can be a fast and advantageous solution for HVAC system design.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3