Hydrodynamic Investigation on Floating Offshore Wind Turbine Platform Integrated with Porous Shell

Author:

Yao Yisheng12,Ning Dezhi12ORCID,Deng Sijia12,Mayon Robert12ORCID,Qin Ming3

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

2. Dalian State Key Laboratory of Offshore Renewable Energy, Dalian University of Technology, Dalian 116024, China

3. Science and Technology Research Institute, China Three Gorges Corporation, Beijing 101149, China

Abstract

As the siting of wind turbines increasingly transitions from shallow water to offshore deep-water locations, improving the platform stability of floating offshore wind turbines is becoming a growing concern. By coupling a porous shell commonly used in traditional marine structures, with a FOWT (floating wind turbine platform), a new spar-buoy with a porous shell was designed. A numerical model investigating the coupling effect of the aero-hydro-mooring system is developed, and the results of the motion response are compared with the OC3-Hywind spar. The motion response of the two platforms was simulated in the time-domain with the incident wave period varied in the range of 5~22 s. The exciting wave force with added mass and radiation damping of the spar with the porous shell is compared with the OC3-Hywind spar. The results demonstrate that the motion response amplitude of the spar with the porous shell decreases in all three main motion freedoms (i.e., surge, heave and pitch, etc.), among which the heave motions are most significantly attenuated. The study shows that the coupling of porous shells with a floating platform to achieve the reduced motion responses is feasible and can be an innovative structure for the development of deep-sea offshore floating wind turbines.

Funder

National Natural Science Foundation of China

LiaoNing Revitalization Talents Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3