Enhancing Breast Cancer Detection and Classification Using Advanced Multi-Model Features and Ensemble Machine Learning Techniques

Author:

Reshan Mana Saleh Al1ORCID,Amin Samina2ORCID,Zeb Muhammad Ali2,Sulaiman Adel3ORCID,Alshahrani Hani3ORCID,Azar Ahmad Taher45ORCID,Shaikh Asadullah1ORCID

Affiliation:

1. Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia

2. Institute of Computing, Kohat University of Science and Technology, Kohat 26000, Pakistan

3. Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia

4. College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

5. Automated Systems and Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh 11586, Saudi Arabia

Abstract

Breast cancer (BC) is the most common cancer among women, making it essential to have an accurate and dependable system for diagnosing benign or malignant tumors. It is essential to detect this cancer early in order to inform subsequent treatments. Currently, fine needle aspiration (FNA) cytology and machine learning (ML) models can be used to detect and diagnose this cancer more accurately. Consequently, an effective and dependable approach needs to be developed to enhance the clinical capacity to diagnose this illness. This study aims to detect and divide BC into two categories using the Wisconsin Diagnostic Breast Cancer (WDBC) benchmark feature set and to select the fewest features to attain the highest accuracy. To this end, this study explores automated BC prediction using multi-model features and ensemble machine learning (EML) techniques. To achieve this, we propose an advanced ensemble technique, which incorporates voting, bagging, stacking, and boosting as combination techniques for the classifier in the proposed EML methods to distinguish benign breast tumors from malignant cancers. In the feature extraction process, we suggest a recursive feature elimination technique to find the most important features of the WDBC that are pertinent to BC detection and classification. Furthermore, we conducted cross-validation experiments, and the comparative results demonstrated that our method can effectively enhance classification performance and attain the highest value in six evaluation metrics, including precision, sensitivity, area under the curve (AUC), specificity, accuracy, and F1-score. Overall, the stacking model achieved the best average accuracy, at 99.89%, and its sensitivity, specificity, F1-score, precision, and AUC/ROC were 1.00%, 0.999%, 1.00%, 1.00%, and 1.00%, respectively, thus generating excellent results. The findings of this study can be used to establish a reliable clinical detection system, enabling experts to make more precise and operative decisions in the future. Additionally, the proposed technology might be used to detect a variety of cancers.

Funder

Deanship of Scientific Research at Najran University for funding this work, under the General Research Funding Program

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3