Study on the Intelligent Modeling of the Blade Aerodynamic Force in Compressors Based on Machine Learning

Author:

Zhang Mingming,Hao Shurong,Hou Anping

Abstract

In order to obtain the aerodynamic loads of the vibrating blades efficiently, the eXterme Gradient Boosting (XGBoost) algorithm in machine learning was adopted to establish a three-dimensional unsteady aerodynamic force reduction model. First, the database for the unsteady aerodynamic response during the blade vibration was acquired through the numerical simulation of flow field. Then the obtained data set was trained by the XGBoost algorithm to set up the intelligent model of unsteady aerodynamic force for the three-dimensional blade. Afterwards, the aerodynamic load could be gained at any spatial location during blade vibration. To evaluate and verify the reliability of the intelligent model for the blade aerodynamic load, the prediction results of the machine learning model were compared with the results of Computation Fluid Dynamics (CFD). The determination coefficient R2 and the Root Mean Square Error (RMSE) were introduced as the model evaluation indicators. The results show that the prediction results based on the machine learning model are in good agreement with the CFD results, and the calculation efficiency is significantly improved. The results also indicate that the aerodynamic intelligent model based on the machine learning method is worthy of further study in evaluating the blade vibration stability.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

1. Numerical Calculation of Three-Dimensional Flow Field in Blade Row of Turbomachine;Chao;Therm. Power Eng.,1994

2. Numerical Analysis and Application of Unsteady Aerodynamic Forces in Vibrating Cascades;Hu;J. Appl. Mech.,2004

3. Research Progress and Prospect of reduced-order Model of unsteady flow Field and its Application;Chen;Prog. Mech.,2011

4. Modal Analysis of Transonic Chattering based on POD and DMD;Kou;Chin. J. Aeronaut.,2016

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3