Stochastic Chebyshev Goal Programming Mixed Integer Linear Model for Sustainable Global Production Planning

Author:

Wang Chia-NanORCID,Nhieu Nhat-LuongORCID,Tran Trang Thi ThuORCID

Abstract

Production planning is a necessary process that directly affects the efficiency of production systems in most industries. The complexity of the current production planning problem depends on increased options in production, uncertainties in demand and production resources. In this study, a stochastic multi-objective mixed-integer optimization model is developed to ensure production efficiency in uncertainty conditions and satisfy the requirements of sustainable development. The efficiency of the production system is ensured through objective functions that optimize backorder quantity, machine uptime and customer satisfaction. The other three objective functions of the proposed model are related to optimization of profits, emissions, and employment changing. The objective functions respectively represent the three elements of sustainable development: economy, environment, and sociality. The proposed model also assures the production manager’s discretion over whether or not to adopt production options such as backorder, overtime, and employment of temporary workers. At the same time, the resource limits of the above options can also be adjusted according to the situation of each production facility via the model’s parameters. The solutions that compromise the above objective functions are determined with the Chebyshev goal programming approach together with the weights of the goals. The model is applied to the multinational production system of a Southeast Asian supplier in the textile industry. The goal programming solution of the model shows an improvement in many aspects compared to this supplier’s manufacturing practices under the same production conditions. Last but not least, the study develops different scenarios based on different random distributions of uncertainty demand and different weights between the objective functions. The analysis and evaluation of these scenarios provide a reference basis for managers to adjust the production system in different situations. Analysis of uncertain demand with more complex random distributions as well as making predictions about the effectiveness of scenarios through the advantages of machine learning can be considered in future studies.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

1. Sustainable Production Methods in Textile Industryhttps://www.intechopen.com/books/textile-industry-and-environment/sustainable-production-methods-in-textile-industry

2. A hybrid multi-subpopulation genetic algorithm for textile batch dyeing scheduling and an empirical study

3. Linear Programming for Aggregate Production Planning in a Textile Company

4. Mathematical Programming Models and Formulations for Deterministic Production Planning Problems;Pochet,2001

5. Deterministic Lotsizing Models for Production Planning;Salomon,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3