Abstract
Production planning is a necessary process that directly affects the efficiency of production systems in most industries. The complexity of the current production planning problem depends on increased options in production, uncertainties in demand and production resources. In this study, a stochastic multi-objective mixed-integer optimization model is developed to ensure production efficiency in uncertainty conditions and satisfy the requirements of sustainable development. The efficiency of the production system is ensured through objective functions that optimize backorder quantity, machine uptime and customer satisfaction. The other three objective functions of the proposed model are related to optimization of profits, emissions, and employment changing. The objective functions respectively represent the three elements of sustainable development: economy, environment, and sociality. The proposed model also assures the production manager’s discretion over whether or not to adopt production options such as backorder, overtime, and employment of temporary workers. At the same time, the resource limits of the above options can also be adjusted according to the situation of each production facility via the model’s parameters. The solutions that compromise the above objective functions are determined with the Chebyshev goal programming approach together with the weights of the goals. The model is applied to the multinational production system of a Southeast Asian supplier in the textile industry. The goal programming solution of the model shows an improvement in many aspects compared to this supplier’s manufacturing practices under the same production conditions. Last but not least, the study develops different scenarios based on different random distributions of uncertainty demand and different weights between the objective functions. The analysis and evaluation of these scenarios provide a reference basis for managers to adjust the production system in different situations. Analysis of uncertain demand with more complex random distributions as well as making predictions about the effectiveness of scenarios through the advantages of machine learning can be considered in future studies.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference44 articles.
1. Sustainable Production Methods in Textile Industryhttps://www.intechopen.com/books/textile-industry-and-environment/sustainable-production-methods-in-textile-industry
2. A hybrid multi-subpopulation genetic algorithm for textile batch dyeing scheduling and an empirical study
3. Linear Programming for Aggregate Production Planning in a Textile Company
4. Mathematical Programming Models and Formulations for Deterministic Production Planning Problems;Pochet,2001
5. Deterministic Lotsizing Models for Production Planning;Salomon,1991
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献