Quantification of Triple Single-Leg Hop Test Temporospatial Parameters: A Validated Method Using Body-Worn Sensors for Functional Evaluation after Knee Injury

Author:

Ahmadian NiloufarORCID,Nazarahari MiladORCID,Whittaker Jackie L.ORCID,Rouhani Hossein

Abstract

Lower extremity kinematic alterations associated with sport-related knee injuries may contribute to an unsuccessful return to sport or early-onset post-traumatic osteoarthritis. Also, without access to sophisticated motion-capture systems, temporospatial monitoring of horizontal hop tests during clinical assessments is limited. By applying an alternative measurement system of two inertial measurement units (IMUs) per limb, we obtained and validated flying/landing times and hop distances of triple single-leg hop (TSLH) test against motion-capture cameras, assessed these temporospatial parameters amongst injured and uninjured groups, and investigated their association with the Knee Injury and Osteoarthritis Outcome Score (KOOS). Using kinematic features of IMU recordings, strap-down integration, and velocity correction techniques, temporospatial parameters were validated for 10 able-bodied participants and compared between 22 youth with sport-related knee injuries and 10 uninjured youth. With median (interquartile range) errors less than 10(16) ms for flying/landing times, and less than 4.4(5.6)% and 2.4(3.0)% of reference values for individual hops and total TSLH progression, differences between hopping biomechanics of study groups were highlighted. For injured participants, second flying time and all hop distances demonstrated moderate to strong correlations with KOOS Symptom and Function in Daily Living scores. Detailed temporospatial monitoring of hop tests is feasible using the proposed IMUs system.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3