A Zero-Dimensional Mixing Controlled Combustion Model for Real Time Performance Simulation of Marine Two-Stroke Diesel Engines

Author:

Feng Yongming,Wang Haiyan,Gao Ruifeng,Zhu YuanqingORCID

Abstract

The paper presents a performance prediction model of marine low-speed two-stroke diesel engines based on an advanced MCC (mixture controlled combustion) model coupled with a fuel injection model. Considering the time of real calculation, the so-called “concentrated exhausting gas” scavenging model and the working process model are used in the present work, and improved by introducing the ratio of pure combustion product over the total gas mass in the cylinder as an expression of the working medium components. The reaction rate model in the zero-dimensional MCC model is improved by introducing the fraction of combustion product in the fuel spray, and the relationship between the combustion model and scavenging quality is established. Meanwhile, the combustion model was simplified in the diffusion combustion phases and integrated with the fuel injection model in order to respond to the change of injection profile and injection timing. A large-scale low-speed marine diesel engine was used for a simulation. The results of the whole model are consistent with experimental data and the speed of calculation is fast enough for real time simulation of low speed and medium speed diesel engines. The prediction model can be used in the design and calibration of the electronic control system and performance optimization of the marine two-stroke diesel engine.

Funder

National Key Research and Development Program of China

Provincial Funding for National Projects of Heilongjiang Province in China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3