Author:
Rodríguez-Melcón Cristina,Alonso-Calleja Carlos,Capita Rosa
Abstract
Biofilms are a key factor in the persistence of Listeria in food processing plants, representing a potential source of foodstuff contamination. Nine Listeria strains (eight Listeria monocytogenes and one Listeria ivanovii) were studied by confocal laser scanning microscopy (CLSM) for their ability to form biofilm on glass, polystyrene, graphene and resin after 120 h of incubation at 12 °C. The relationship between cell surface hydrophobicity and biofilm formation was also investigated. On comparing the data for all the strains, similar (P > 0.05) biovolume values were obtained on glass (average 3.39 ± 1.69 µm3/µm2) and graphene (2.93 ± 1.14 µm3/µm2), while higher (P < 0.05) values were observed for polystyrene (4.39 ± 4.14 µm3/µm2). The highest (P < 0.01) biovolume levels were found in the biofilms formed on resin (7.35 ± 1.45 µm3/µm2), which also had the smallest biomass of inactivated cells (0.38 ± 0.37 µm3/µm2 vs. 1.20 ± 1.12 µm3/µm2 on the remaining surfaces; P < 0.001). No relationship was noted between cell surface hydrophobicity and biofilm-forming ability.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science