Abstract
With the improvement of industrial requirements for the quality of cold rolled strips, flatness has become one of the most important indicators for measuring the quality of cold rolled strips. In this paper, the strip production data of a 1250 mm tandem cold mill in a steel plant is modeled by an improved deep neural network (the improved DNN) to improve the accuracy of strip shape prediction. Firstly, the type of activation function is analyzed, and the monotonicity of the activation function is deemed independent of the convexity of the loss function in the deep network. Regardless of whether the activation function is monotonic, the loss function is not strictly convex. Secondly, the non-convex optimization of the loss functionextended from the deep linear network to the deep nonlinear network, is discussed, and the critical point of the deep nonlinear network is identified as the global minimum point. Finally, an improved Swish activation function based on batch normalization is proposed, and its performance is evaluated on the MNIST dataset. The experimental results show that the loss of an improved Swish function is lower than that of other activation functions. The prediction accuracy of a deep neural network (DNN) with an improved Swish function is 0.38% more than that of a deep neural network (DNN) with a regular Swish function. For the DNN with the improved Swish function, the mean square error of the prediction for the flatness of cold rolled strip is reduced to 65% of the regular DNN. The accuracy of the improved DNN is up to and higher than the industrial requirements. The shape prediction of the improved DNN will assist and guide the industrial production process, reducing the scrap yield and industrial cost.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for Central University
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference22 articles.
1. Analysis on Shape Defects of Medium and Heavy Plate and Control Measures;Dong;Tianjin Metall.,2016
2. Control of strip flatness in cold rolling;Claire;Ironand Steel Eng.,1997
3. Application of Effect Function in Shape Control of Cold Rolling Mill;Wang;Steel Roll.,1999
4. Study on shape and gauge control system of cold strip mill;Chen;J. Plast. Eng.,2016
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献