Effects of Modified Al2O3-Decorated Ionic Liquid on the Mechanical Properties and Impact Resistance of a Polyurethane Elastomer

Author:

Hu Fan,Gao Jun,Zhang Biao,Qi FugangORCID,Zhao Nie,Ouyang Xiaoping

Abstract

In this work, a new composite material with excellent dynamic impact resistance and outstanding quasi-static mechanical properties was synthesized. The composite material is composed of a polyurethane elastomer and a novel nano-polymer. The nano-polymer was composed of silane coupling agent-modified alumina microspheres and functionalized ionic liquids by double bond polymerization. The universal testing machine and split Hopkinson pressure bar were used to characterize the compression behavior, strength and energy absorption of the composite materials under static and dynamic conditions. Additionally, the comprehensive mechanical properties of polyurethane elastomer with different nano-polymer loadings (0.5–2.5 wt.%) were studied. The results show that whether it was static compression or dynamic impact, the polyurethane elastomer with 1% nano-polymer had the best performance. For the composite material with the best properties, its compressive yield strength under the static compression was about 61.13% higher than that of the pure polyurethane elastomer, and its energy absorption of dynamic impacts was also increased by about 15.53%. Moreover, the shape memory effect was very good (shape recovery is approximately 95%), and the microscopic damage degree was relatively small. This shows that the composite material with the best properties can withstand high compression loads and high-speed impacts. The developed composite material is a promising one for materials science and engineering, especially for protection against compression and impacts.

Funder

Educational Commission of Hunan Province of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3