Relationship between Pressure and Output Parameters in Belt Grinding of Steels and Nickel Alloy

Author:

Syreyshchikova Nelli Vladimirovna,Pimenov Danil YurievichORCID,Gupta Munish KumarORCID,Nadolny KrzysztofORCID,Giasin KhaledORCID,Aamir MuhammadORCID,Sharma ShubhamORCID

Abstract

Belt grinding of flat surfaces of typical parts made of steel and alloys, such as grooves, shoulders, ends, and long workpieces, is a good alternative to milling. Several factors can influence the belt grinding process of flat surfaces of metals, such as cutting speed and pressure. In this work, the importance of pressure in the belt grinding was investigated in terms of technological and experimental aspects. The grinding experiments were performed on structural alloy steel 30KhGSN2/30KhGSNA, structural carbon steel AISI 1045, corrosion-resistant and heat-resistant stainless steel AISI 321, and heat-resistant nickel alloy KHN77TYuR. The performance of the grinding belt was investigated in terms of surface roughness, material removal rate (MRR), grinding belt wear, performance index. Estimated indicators of the belt grinding process were developed: cutting ability; reduced cutting ability for belt grinding of steels and heat-resistant alloy. It was found that with an increase in pressure p, the surface roughness of the processed surface Ra decreased while the tool wear VB and MRR increased. With a decrease in plasticity and difficulty of machinability, the roughness, material removal rate, reduced cutting capacity (Performance index) qper, material removal Q decreased, and the tool wear VB increased. The obtained research results can be used by technologists when creating belt grinding operations for steels and alloys to ensure the required performance is met.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3