Electrical Discharge Machining of Alumina Using Ni-Cr Coating and SnO Powder-Mixed Dielectric Medium

Author:

Okunkova Anna A.ORCID,Volosova Marina A.,Kropotkina Elena Y.,Hamdy Khaled,Grigoriev Sergey N.ORCID

Abstract

Aluminum-based ceramics exhibit excellent wear resistance and hot hardness that are suitable for various responsible applications allowing products to work under extreme mechanical and thermal loads (up to 1000 °C). The problem of high-precision forming complex-shaped parts is a known engineering challenge due to the insulating properties of aluminum-containing ceramics and the formation of chemically active carbides in a hydrocarbon medium. The alternative approach for electrical discharge machining non-conductive sintered Al2O3 in the water-based medium using nickel-chrome plasma-vapor-deposed coating of 12 mm, SnO powder suspension (particle diameter of ⌀10 µm, concentration of 150 g/L), and brass wire-tool is proposed. The productivity was evaluated by calculating the material removal rate and discharge gap for various combinations of pulse frequency and duration. The maximal material removal rate of 0.0014 mm3/s was achieved for a pulse frequency of 30 kHz and pulse duration of 1.7–2.5 μs. The recommended value of the interelectrode gap is 48.0 ± 4.9 µm. The possibility of electrical discharge machining aluminum-containing insulating ceramics without using hydrocarbons, carbon and copper-group assisting measures was proposed and shown for the first time. The chemical content of the debris in the interelectrode gap between components of the materials was thermochemically analyzed.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3