Airborne SAR Autofocus Based on Blurry Imagery Classification

Author:

Chen JianlaiORCID,Yu HanwenORCID,Xu Gang,Zhang Junchao,Liang Buge,Yang Degui

Abstract

Existing airborne SAR autofocus methods can be classified as parametric and non-parametric. Generally, non-parametric methods, such as the widely used phase gradient autofocus (PGA) algorithm, are only suitable for scenes with many dominant point targets, while the parametric ones are suitable for all types of scenes, in theory, but their efficiency is generally low. In practice, whether many dominant point targets are present in the scene is usually unknown, so determining what kind of algorithm should be selected is not straightforward. To solve this issue, this article proposes an airborne SAR autofocus approach combined with blurry imagery classification to improve the autofocus efficiency for ensuring autofocus precision. In this approach, we embed the blurry imagery classification based on a typical VGGNet in a deep learning community into the traditional autofocus framework as a preprocessing step before autofocus processing to analyze whether dominant point targets are present in the scene. If many dominant point targets are present in the scene, the non-parametric method is used for autofocus processing. Otherwise, the parametric one is adopted. Therefore, the advantage of the proposed approach is the automatic batch processing of all kinds of airborne measured data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3