Change Detection Using a Texture Feature Space Outlier Index from Mono-Temporal Remote Sensing Images and Vector Data

Author:

Wei DongshengORCID,Hou Dongyang,Zhou Xiaoguang,Chen Jun

Abstract

Multi-temporal remote sensing images are the primary sources for change detection. However, it is difficult to obtain comparable multi-temporal images at the same season and time of day with the same sensor. Considering texture homogeneity among objects belonging to the same category, this paper presents a new change detection approach using a texture feature space outlier index from mono-temporal remote sensing images and vector data. In the proposed approach, a texture feature contribution index (TFCI) is defined based on information gain to select the optimal texture features, and a feature space outlier index (FSOI) based on local reachability density is presented to automatically identify outlier samples and changed objects. Our approach includes three steps: (1) the sampling method is designed considering spatial distribution and topographic properties of image objects extracted by segmenting the recent image with existing vector map. (2) Samples with changed categories are refined by an iteration procedure of texture feature selection and outlier sample elimination; and (3) the changed image objects are identified and classified using the refined samples to calculate the FSOI values of the image objects. Three experiments in the two study areas were conducted to validate its performance. Overall accuracies of 95.94%, 96.36%, and 96.28% were achieved, respectively, while the omission and commission errors for every category were all very low. Four widely used methods with two-temporal images were selected for comparison, and the accuracy of the proposed method is higher than theirs. This indicates that our approach is effective and feasible.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3