Change Detection Based on Existing Vector Polygons and Up-to-Date Images Using an Attention-Based Multi-Scale ConvTransformer Network

Author:

Wang Shengli12ORCID,Zhu Yihu23,Zheng Nanshan1,Liu Wei3,Zhang Hua1ORCID,Zhao Xu4,Liu Yongkun5ORCID

Affiliation:

1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

2. Jiangsu Geologic Surveying and Mapping Institute, Nanjing 211102, China

3. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China

4. School of Earth Science and Engineering, Hohai University, Nanjing 211100, China

5. Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (International Research Center of Big Data for Sustainable Development Goals), Beijing 100094, China

Abstract

Vector polygons represent crucial survey data, serving as a cornerstone of national geographic censuses and forming essential data sources for detecting geographical changes. The timely update of these polygons is vital for governmental decision making and various industrial applications. However, the manual intervention required to update existing vector polygons using up-to-date high-resolution remote sensing (RS) images poses significant challenges and incurs substantial costs. To address this, we propose a novel change detection (CD) method for land cover vector polygons leveraging high-resolution RS images and deep learning techniques. Our approach begins by employing the boundary-preserved masking Simple Linear Iterative Clustering (SLIC) algorithm to segment RS images. Subsequently, an adaptive cropping approach automatically generates an initial sample set, followed by denoising using the efficient Visual Transformer and Class-Constrained Density Peak-Based (EViTCC-DP) method, resulting in a refined training set. Finally, an enhanced attention-based multi-scale ConvTransformer network (AMCT-Net) conducts fine-grained scene classification, integrating change rules and post-processing methods to identify changed vector polygons. Notably, our method stands out by employing an unsupervised approach to denoise the sample set, effectively transforming noisy samples into representative ones without requiring manual labeling, thus ensuring high automation. Experimental results on real datasets demonstrate significant improvements in model accuracy, with accuracy and recall rates reaching 92.08% and 91.34%, respectively, for the Nantong dataset, and 93.51% and 92.92%, respectively, for the Guantan dataset. Moreover, our approach shows great potential in updating existing vector data while effectively mitigating the high costs associated with acquiring training samples.

Funder

National Natural Science Foundation of China

Research Project of Jiangsu Provincial Geological Bureau

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3