Extracting Canopy Closure by the CHM-Based and SHP-Based Methods with a Hemispherical FOV from UAV-LiDAR Data in a Poplar Plantation

Author:

Pu Yihan,Xu DandanORCID,Wang Haobin,An Deshuai,Xu Xia

Abstract

Canopy closure (CC), a useful biophysical parameter for forest structure, is an important indicator of forest resource and biodiversity. Light Detection and Ranging (LiDAR) data has been widely studied recently for forest ecosystems to obtain the three-dimensional (3D) structure of the forests. The components of the Unmanned Aerial Vehicle LiDAR (UAV-LiDAR) are similar to those of the airborne LiDAR, but with higher pulse density, which reveals more detailed vertical structures. Hemispherical photography (HP) had proven to be an effective method for estimating CC, but it was still time-consuming and limited in large forests. Thus, we used UAV-LiDAR data with a canopy-height-model-based (CHM-based) method and a synthetic-hemispherical-photography-based (SHP-based) method to extract CC from a pure poplar plantation in this study. The performance of the CC extraction methods based on an angular viewpoint was validated by the results of HP. The results showed that the CHM-based method had a high accuracy in a 45° zenith angle range with a 0.5 m pixel size and a larger radius (i.e., k = 2; R2 = 0.751, RMSE = 0.053), and the accuracy declined rapidly in zenith angles of 60° and 75° (R2 = 0.707, 0.490; RMSE = 0.053, 0.066). In addition, the CHM-based method showed an underestimate for leaf-off deciduous trees with low CC. The SHP-based method also had a high accuracy in a 45° zenith angle range, and its accuracy was stable in three zenith angle ranges (R2: 0.688, 0.674, 0.601 and RMSE = 0.059, 0.056, 0.058 for a 45°, 60° and 75° zenith angle range, respectively). There was a similar trend of CC change in HP and SHP results with the zenith angle range increase, but there was no significant change with the zenith angle range increase in the CHM-based method, which revealed that it was insensitive to the changes of angular CC compared to the SHP-based method. However, the accuracy of both methods showed differences in plantations with different ages, which had a slight underestimate for 8-year-old plantations and an overestimate for plantations with 17 and 20 years. Our research provided a reference for CC estimation from a point-based angular viewpoint and for monitoring the understory light conditions of plantations.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Natural Science Foundation of Jiangsu Province

Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3