Improved Forest Canopy Closure Estimation Using Multispectral Satellite Imagery within Google Earth Engine

Author:

Xie BoORCID,Cao Chunxiang,Xu Min,Yang Xinwei,Duerler Robert Shea,Bashir BarjeeceORCID,Huang Zhibin,Wang Kaimin,Chen Yiyu,Guo Heyi

Abstract

The large area estimation of forest canopy closure (FCC) using remotely sensed data is of high interest in monitoring forest changes and forest health, as well as in assessing forest ecological services. The accurate estimation of FCC over the regional or global scale is challenging due to the difficulty of sample acquisition and the slow processing efficiency of large amounts of remote sensing data. To address this issue, we developed a novel bounding envelope methodology based on vegetation indices (BEVIs) for determining vegetation and bare soil endmembers using the normalized differences vegetation index (NDVI), modified bare soil index (MBSI), and bare soil index (BSI) derived from Landsat 8 OLI and Sentinel-2 image within the Google Earth Engine (GEE) platform, then combined the NDVI with the dimidiate pixel model (DPM), one of the most commonly used spectral-based unmixing methods, to map the FCC distribution over an area of more than 90,000 km2. The key processing was the determination of the threshold parameter in BEVIs that characterizes the spectral boundary of vegetation and soil endmembers. The results demonstrated that when the threshold equals 0.1, the extraction accuracy of vegetation and bare soil endmembers is the highest with the threshold range given as (0, 0.3), and the estimated spatial distribution of FCC using both Landsat 8 and Sentinel-2 images were consistent, that is, the area with high canopy density was mainly distributed in the western mountainous region of Chifeng city. The verification was carried out using independent field plots. The proposed approach yielded reliable results when the Landsat 8 data were used (R2 = 0.6, RMSE = 0.13, and 1-rRMSE = 80%), and the accuracy was further improved using Sentinel-2 images with higher spatial resolution (R2 = 0.81, RMSE = 0.09, and 1-rRMSE = 86%). The findings demonstrate that the proposed method is portable among sensors with similar spectral wavebands, and can assist in mapping FCC at a regional scale while using multispectral satellite imagery.

Funder

National Natural Science Foundation of China

Forestry Technological Developments and Monitoring and Assessment of Terrestrial Ecosystem Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3