Extraction of Offshore Aquaculture Areas from Medium-Resolution Remote Sensing Images Based on Deep Learning

Author:

Lu Yimin,Shao Wei,Sun Jie

Abstract

It is important for aquaculture monitoring, scientific planning, and management to extract offshore aquaculture areas from medium-resolution remote sensing images. However, in medium-resolution images, the spectral characteristics of offshore aquaculture areas are complex, and the offshore land and seawater seriously interfere with the extraction of offshore aquaculture areas. On the other hand, in medium-resolution images, due to the relatively low image resolution, the boundaries between breeding areas are relatively fuzzy and are more likely to ‘adhere’ to each other. An improved U-Net model, including, in particular, an atrous spatial pyramid pooling (ASPP) structure and an up-sampling structure, is proposed for offshore aquaculture area extraction in this paper. The improved ASPP structure and up-sampling structure can better mine semantic information and location information, overcome the interference of other information in the image, and reduce ‘adhesion’. Based on the northeast coast of Fujian Province Sentinel-2 Multispectral Scan Imaging (MSI) image data, the offshore aquaculture area extraction was studied. Based on the improved U-Net model, the F1 score and Mean Intersection over Union (MIoU) of the classification results were 83.75% and 73.75%, respectively. The results show that, compared with several common classification methods, the improved U-Net model has a better performance. This also shows that the improved U-Net model can significantly overcome the interference of irrelevant information, identify aquaculture areas, and significantly reduce edge adhesion of aquaculture areas.

Funder

National Key Research and Development Program of China

Special Projects of the Central Government Guiding Local Science and Technology Development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3