Automatic Extraction Method of Aquaculture Sea Based on Improved SegNet Model

Author:

Xie Weiyi1ORCID,Ding Yuan1ORCID,Rui Xiaoping1ORCID,Zou Yarong23,Zhan Yating4

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China

2. National Satellite Ocean Application Service, Ministry of Natural Resources, Beijing 100081, China

3. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China

4. Geological Survey of Jiangsu Province, Nanjing 210018, China

Abstract

Timely, accurate, and efficient extraction of aquaculture sea is important for the scientific and rational utilization of marine resources and protection of the marine environment. To improve the classification accuracy of remote sensing of aquaculture seas, this study proposes an automatic extraction method for aquaculture seas based on the improved SegNet model. This method adds a pyramid convolution module and a convolutional block attention module based on the SegNet network model, which can effectively increase the utilization ability of features and capture more global image information. Taking the Gaofen-1D image as an example, the effectiveness of the improved method was proven through ablation experiments on the two modules. The prediction results of the proposed method were compared with those of the U-Net, SegNet, and DenseNet models, as well as with those of the traditional support vector machine and random forest methods. The results showed that the improved model has a stronger generalization ability and higher extraction accuracy. The overall accuracy, mean intersection over union, and F1 score of the three test areas were 94.86%, 87.23%, and 96.59%, respectively. The accuracy of the method is significantly higher than those of the other methods, which proves the effectiveness of the method for the extraction of aquaculture seas and provides new technical support for automatic extraction of such areas.

Funder

Jiangsu Province Marine Science and Technology Innovation Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3