Investigation on Global Distribution of the Atmospheric Trapping Layer by Using Radio Occultation Dataset

Author:

Zhou YongORCID,Liu Yi,Qiao Jiandong,Lv Mingjie,Du Zhitao,Fan Zhiqiang,Zhao Jiaqi,Yu ZhibinORCID,Li Jiang,Zhao Zhengyu,He FangORCID,Zhou ChenORCID

Abstract

The trapping layer refers to the atmospheric layer with vertical gradient of atmospheric refractivity less than −157 N-Units/km or vertical gradient of atmospheric modified refractivity 0 M-unit/km, which has a significant impact on radar and radio communication systems. Based on COSMIC and other radio occultation data, we show the statistical characteristics of the global trapping layer during 2005–2020.The statistical results show that the occurrence rate of the trapping layers is mainly concentrated between 50°S and 50°N, and higher occurrences of the trapping layers with more than 50% mainly occur in the boundary area between ocean and land, such as the northwest coastal area of Mexico, the west coastal area of Africa, the Mediterranean Sea, the Red Sea and the Arabian Sea, and the northwest area of Australia, etc. The altitude of the trapping layer is lower near the land and increases with the distance away from the coastline. The intensity is mainly between 6 M-unit and 24 M-unit (an M-unit is the unit of atmospheric modified refractivity), and the average value in some regions is above 24 M-unit, such as in the Arabian Sea area. In addition, the thickness of the trapping layer is between 50 and 240 m, and is generally larger over the ocean than over the land. These results reveal that the generation of the trapping layer is the result of the interaction of various background environmental factors such as radiation band migration, trade winds, monsoons, solar radiation heating, sea–land breezes and so on.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Propagation of short radio waves (Revised edition);Kerr;IEE Electromagn. Waves Ser.,1987

2. Effect of ducting on radio occultation measurements: An assessment based on high-resolution radiosonde soundings

3. Consideration of the usefulness of microwave propagation prediction methods on air-to-ground paths;Almond,1983

4. Refraction;Crane,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3