COSMIC-2 RO Profile Ending at PBL Top with Strong Vertical Gradient of Refractivity

Author:

Xu XuORCID,Zou Xiaolei

Abstract

The Formosa Satellite-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (Satellite-7/COSMIC-2), which was successfully launched on 25 June 2019, provides dense radio occultation (RO) observations over the tropics and subtropics. This study examines the RO-observed lowest altitude and its possible relationship to refractivity gradients and planetary boundary layer (PBL) heights. COSMIC-2 RO data over the Southeast Pacific region (SEP) and the South-Central Pacific (SCP) from August 2020 are employed to determine their RO-observed lowest altitudes, and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data are used to obtain the gradients of refractivity. Results show that there are no ray perigees below the PBL top when the vertical gradient of N−N(r) is strong (<−65 N-unit km−1), where N(r) represents the vertical profile of the spherically symmetric refractivity. Significantly strong local vertical gradients due to atmospheric ducting occur more frequently over the SEP than the SCP areas. For some cases, a strong local horizontal gradient of refractivity in the tangent direction of a ray near its perigee point can also limit the RO profile from going further below even when the vertical gradient of N−N(r) is relatively weak. Fortunately, only about 0.6% COSMIC-2 RO profiles are unaffected by the above factors but cannot observe below 2-km altitude.

Funder

the National Key R&D Program of China Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3