Band Gap Engineering in Ultimately Thin Slabs of CdTe with Different Layer Stackings

Author:

Kuznetsov Vladimir G.12ORCID,Gavrikov Anton A.2ORCID,Kolobov Alexander V.23ORCID

Affiliation:

1. Ioffe Institute, 26 Polytechnicheskaya Str., 194021 St. Petersburg, Russia

2. Center for Computational Materials Science, Institute of Physics, Herzen State Pedagogical University of Russia, 48 Moika Emb., 191186 St. Petersburg, Russia

3. Department of Physical Electronics, Institute of Physics, Herzen State Pedagogical University of Russia, 48 Moika Emb., 191186 St. Petersburg, Russia

Abstract

Ultrathin solid slabs often have properties different from those of the bulk phase. This effect can be observed both in traditional three-dimensional materials and in van der Waals (vdW) solids in the few monolayer limit. In the present work, the band gap variation of the CdTe slabs, induced by their thickness, was studied by the density functional theory (DFT) method for the sphalerite (zinc-blende) phase and for the recently proposed inverted phase. The sphalerite phase has the Te–Cd–Te–Cd atomic plane sequence, while in the inverted phase Cd atoms are sandwiched by Te planes forming vdW blocks with the sequence Te–Cd–Cd–Te. Based on these building blocks, a bulk vdW CdTe crystal was built, whose thermodynamical stability was verified by DFT calculations. Band structures and partial densities of states for sphalerite and inverted phases were calculated. It was demonstrated for both phases that using slabs with a thickness of one to several monolayers for sphalerite phase (vdW blocks for inverted phase), structures with band gaps varying in a wide range can be obtained. The presented results allow us to argue that ultrathin CdTe can be a promising electronic material.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3