Preparation of Activated Carbon/TiO2 Nanohybrids for Photodegradation of Reactive Red-35 Dye Using Sunlight

Author:

Mondol Bappy,Sarker AnupamORCID,Shareque A. M.,Dey Shaikat ChandraORCID,Islam Mohammad TariqulORCID,Das Ajoy Kumar,Shamsuddin Sayed Md.ORCID,Molla Md. Ashraful IslamORCID,Sarker MithunORCID

Abstract

Activated carbon/titanium dioxide (AC/TiO2) nanohybrids were synthesized by a hydrothermal technique using various weight percent of commercial AC and were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). The synthesized nanohybrids were applied to photodegradation of Reactive Red-35 (RR-35) dye in aqueous solution using sunlight. Due to the synergistic effect of adsorption and photodegradation activity, AC/TiO2 nanohybrids were more efficient in treating the aqueous dye solution than that of AC and TiO2. The maximum (95%) RR-35 dye removal from the water was obtained with 20 wt% AC/TiO2 within 30 min at natural pH of 5.6. The possible photodegradation mechanism of RR-35 dye with AC/TiO2 was discussed from the scavenger test. Moreover, AC/TiO2 was found to be suitable for long-term repeated applications through recyclability experiments. Therefore, AC/TiO2 nanohybrid is a promising photocatalyst for treating azo dyes especially RR-35 from water.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3