Sustainable Sol‐Gel Approach for Visible Light‐Responsive Titanium Dioxide Nanoparticles in Efficient Diazinon Removal

Author:

Mohamad Idris Nurul Hidayah1,Abdul Mu'minin Aina Hanin1,Yoon Tiem Leong2,Ohno Teruhisa3,Lee Hooi Ling1ORCID

Affiliation:

1. Nanomaterials Research Group School of Chemical Sciences Universiti Sains Malaysia USM 11800 Minden, Penang Malaysia

2. School of Physics Universiti Sains Malaysia USM 11800 Minden, Penang Malaysia

3. Department of Materials Science Faculty of Engineering Kyushu Institute of Technology 1-1 Sensui-cho, Tobata-ku Kitakyushu, Fukuoka 804-8550 Japan

Abstract

AbstractThis study addresses water pollution challenges by employing photocatalysis as an effective solution. Titanium dioxide (TiO2) with unique characteristics is widely utilized in this approach. However, the design of nanosized TiO2 particles is crucial for enhancing photocatalytic performance during diazinon's photodegradation. As such, the TiO2 nanoparticles (NPs) were synthesized via the green sol‐gel method in this study, exhibit a mixed anatase‐brookite phase, a small particle size of 11.17 nm, and lower bandgap energy (3.00 eV) than pure anatase TiO2 of 3.20 eV, rendering them active under visible light. DFTB calculation was deployed to investigate the role of oxygen vacancies in reducing the bandgap energy. Experimentally measured (3.00 eV) and computationally (2.812 eV) determined bandgap energies align well. The TiO2 NPs demonstrate significant photocatalytic efficacy, degrading 73.3 % of diazinon within 210 min under sunlight, with a mineralization degree of 43.50 %, and 2‐isopropyl‐6‐methylpyrimidin‐4‐ol (IMP) was detected as the intermediate product. The photodegradation follows first‐order kinetics, and adsorption isotherm analysis fits the Langmuir model. ⋅O2 is identified as the predominant reactive oxygen species in the diazinon's photodegradation. Hence, the synthesized TiO2 NPs offer good reusability, maintaining a degradation efficiency of 67.4 % even after five cycles, showing good potential for wastewater treatment applications.

Funder

Universiti Sains Malaysia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3