Local and Remote Conformational Switching in 2-Fluoro-4-Hydroxy Benzoic Acid

Author:

Góbi SándorORCID,Balbisi Mirjam,Tarczay György

Abstract

In this work, 2-F-4-OH benzoic acid was isolated in Ar matrices and conformational changes were induced by near-IR irradiating the sample. Upon deposition, three conformers could be observed in the matrix, denoted as A1, A2, and D1, respectively. A1 and A2 are trans carboxylic acids, i.e., there is an intramolecular H bond between the H and the carbonyl O atoms in the COOH group, whereas D1 is a cis carboxylic acid with an intramolecular H bond between the F atom and the H atom in the COOH group, which otherwise has the same structure as A1. The difference between A1 and A2 is in the orientation of the carbonyl O atom with regard to the F atom, i.e., whether they are on the opposite or on the same side of the molecule, respectively. All three conformers have their H atom in their 4-OH group, facing the opposite direction with regard to the F atom. The stretching overtones of the 4-OH and the carboxylic OH groups were selectively excited in the case of each conformer. Unlike A2, which did not show any response to irradiation, A1 could be converted to the higher energy form D1. The D1 conformer spontaneously converts back to A1 via tunneling; however, the conversion rate could be significantly increased by selectively exciting the OH vibrational overtones of D1. Quantum efficiencies have been determined for the ‘local’ or ‘remote’ excitations, i.e., when the carboxylic OH or the 4-OH group is excited in order to induce the rotamerization of the carboxylic OH group. Both ‘local’ and ‘remote’ conformational switching are induced by the same type of vibration, which allows for a direct comparison of how much energy is lost by energy dissipation during the two processes. The experimental findings indicate that the ‘local’ excitation is only marginally more efficient than the ‘remote’ one.

Funder

Hungarian Academy of Sciences

Eötvös Loránd University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3