Abstract
Both vibrational-excitation-induced (by (N)IR laser) and spontaneous (by H atom tunneling) conformational changes are often investigated by matrix-isolation spectroscopy. It is well known that rigid hosts, such as solid noble gases, N2, or normal-H2, can largely affect both the quantum efficiency of the (N)IR photon-induced process and the tunneling rate. In the present study, the conformational changes of formic and acetic acids, as well as glycine, were investigated in a soft quantum host, solid para-H2. It is shown that the tunneling rates in para-H2 are orders of magnitude larger than those in rigid hosts. Furthermore, our results also suggest that the quantum efficiencies of some (N)IR-light-induced conformational changes are larger than in rigid matrices. These results can open a door for the applications of para-H2 host in conformational and tunneling studies and can help understand the details of these complex processes.
Funder
Hungarian Academy of Sciences
Eötvös Loránd University
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献