Abstract
The tidal freshwater zone near the estuarine head-of-tide is potentially sensitive to both sea-level rise and associated salinity increases as well as changing watershed inputs of freshwater and nutrients. We evaluated the vegetation response of tidal freshwater forested wetlands (TFFW) to changes in nontidal river versus estuarine controls along the longitudinal gradient of the Mattaponi and Pamunkey rivers in the Mid-Atlantic USA. The gradient included nontidal freshwater floodplain (NT) and upper tidal (UT), lower tidal (LT), and stressed tidal forest transitioning to marsh (ST) TFFW habitats on both rivers. Plot-based vegetation sampling and dendrochronology were employed to examine: (1) downriver shifts in plant community composition and the structure of canopy trees, understory trees/saplings/shrubs and herbs, tree basal-area increment (BAI) and (2) interannual variability in BAI from 2015 dating back as far as 1969 in relation to long-term river and estuary monitoring data. With greater tidal influence downstream, tree species dominance shifted, live basal area generally decreased, long-term mean BAI of individual trees decreased, woody stem mortality increased, and live herbaceous vegetative cover and richness increased. Acer rubrum, Fagus grandifolia, Ilex opaca, and Fraxinus pennsylvanica dominated NT and UT sites, with F. pennsylvanica and Nyssa sylvatica increasingly dominating at more downstream tidal sites. Annual tree BAI growth was positively affected by nontidal river flow at NT and UT sites which were closer to the head-of-tide, positively influenced by small salinity increases at LT and ST sites further downstream, and positively influenced by estuarine water level throughout the gradient; nutrient influence was site specific with both positive and negative influences. The counterintuitive finding of salinity increasing tree growth at sites with low BAI is likely due to either competitive growth release from neighboring tree death or enhanced soil nutrient availability that may temporarily mitigate the negative effects of low-level salinization and sea-level increases on living TFFW canopy trees, even as overall plant community conversion to tidal marsh progresses.
Reference69 articles.
1. Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States;Conner,2007
2. Coastal Wetlands of the United States, an Accounting of a Valuable National Resource;Field,1991
3. Tidal extension and sea-level rise: recommendations for a research agenda
4. Effectiveness Monitoring at Tidal Wetland Restoration and Reference Sites in the Siuslaw River Estuary: A Tidal Swamp Focus;Brophy,2009
5. New Tools for Tidal Wetland Restoration: Development of a Reference Conditions Database and a Temperature Sensor Method for Detecting Tidal Inundation in Least-Disturbed Tidal Wetlands of Oregon, USA. Amended Final Report;Brophy,2011
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献