Productivity of Eucalyptus pellita in Sumatra: Acacia mangium Legacy, Response to Phosphorus, and Site Variables for Guiding Management

Author:

Hardiyanto Eko,Inail Maydra,Nambiar E.

Abstract

We report on experimental studies conducted in South Sumatra with interrelated objectives to (i) examine the trends in production covering 30 years, including three rotations of Acacia mangium followed by Eucalyptus pellita which replaced A. mangium for managing the widespread threat of diseases; (ii) understand the effects of inter-rotation slash and litter management applied to acacia (legacy effects) on E. pellita growth; (iii) assess the long term changes in the top soil layer arising from above; (iv) evaluate, through a network of experiments, across the landscape, the nature and extent of growth responses to additional phosphorus. This data was also used to explore some of the critical site and stand variables which determine the variations in productivity and responses to management. The current growth rates of E. pellita are lower than those achieved in A. mangium. The management-legacy effects by conserving site resources provides a sustainable base for the growth of E. pellita, but for further increase in productivity, additional management actions are necessary. Changes in soil pH, carbon, N and extractable P were relatively small after four rotations. Supply of P at planting gave wood volume gains at harvest, ranging from 16 to 66% across sites. The plinthite layer in the soil profile was related to productivity, with higher growth rates of E. pellita occurring when the plinthite was at deeper layers. There is much scope for increasing productivity per unit area in this landscape, and available knowledge can be synthesized into a package of best practices for application. Management should aim to improve the quality of inter-rotation management to ensure more than 90% survival, and fast growth rates during the first 2 years. We provide a framework for further research and for refining management to produce the much needed additional domestic wood supply for the local industry.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3