Identifying Stops and Moves in WiFi Tracking Data

Author:

Chilipirea Cristian,Baratchi Mitra,Dobre Ciprian,Steen Maarten

Abstract

There are multiple methods for tracking individuals, but the classical ones such as using GPS or video surveillance systems do not scale or have large costs. The need for large-scale tracking, for thousands or even millions of individuals, over large areas such as cities, requires the use of alternative techniques. WiFi tracking is a scalable solution that has gained attention recently. This method permits unobtrusive tracking of large crowds, at a reduced cost. However, extracting knowledge from the data gathered through WiFi tracking is not simple, due to the low positional accuracy and the dependence on signals generated by the tracked device, which are irregular and sparse. To facilitate further data analysis, we can partition individual trajectories into periods of stops and moves. This abstraction level is fundamental, and it opens the way for answering complex questions about visited locations or even social behavior. Determining stops and movements has been previously addressed for tracking data gathered using GPS. GPS trajectories have higher positional accuracy at a fixed, higher frequency as compared to trajectories obtained through WiFi. However, even with the increase in accuracy, the problem, of separating traces in periods of stops and movements, remains similar to the one we encountered for WiFi tracking. In this paper, we study three algorithms for determining stops and movements for GPS-based datasets and explore their applicability to WiFi-based data. We propose possible improvements to the best-performing algorithm considering the specifics of WiFi tracking data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3