Passenger Travel Patterns and Behavior Analysis of Long-Term Staying in Subway System by Massive Smart Card Data

Author:

Xue Gang,Gong Daqing,Zhang Jianhai,Zhang Peng,Tai Qimin

Abstract

Due to the massive congestion in ground transportation in Beijing, underground rail transit has gradually become the main mode of travel for residents of large urban areas. Because the average daily traffic of the Beijing subway is over 12 million passengers, ensuring the safety of underground rail transit is particularly important. Big data shows that more than 4000 passengers participate in Long-term Stay in the Subway every day. However, the behaviors of these passengers have not been characterized. This paper proposes a method for identifying the Long-term Staying in Subway System (LSSS) in the subway based on the shortest path and analyze its travel mode. In combination with the past research of scholars, we try to quantify the suspected behavior with a database of assumed suspected behavior records. Finally, we extract the spatial-temporal travel characteristics of passengers and we propose a SAE-DNN algorithm to identify suspected anomalies; the accuracy of the training set can reach 95.7%, and the accuracy of the test set can also reach 93.5%, which provides a reference for the subway operators and the public security system.

Funder

Beijing Social Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3