Comparing Sentinel-2 and WorldView-3 Imagery for Coastal Bottom Habitat Mapping in Atlantic Canada

Author:

Wilson Kristen L.,Wong Melisa C.,Devred EmmanuelORCID

Abstract

Satellite remote sensing is a valuable tool to map and monitor the distribution of marine macrophytes such as seagrass and seaweeds that perform many ecological functions and services in coastal habitats. Various satellites have been used to map the distribution of these coastal bottom habitat-forming species, with each sensor providing unique benefits. In this study, we first explored optimal methods to create bottom habitat maps using WorldView-3 satellite imagery. We secondly compared the WorldView-3 bottom habitat maps to previously produced Sentinel-2 maps in a temperate, optically complex environment in Nova Scotia, Canada to identify the top performing classification and the advantages and disadvantages of each sensor. Sentinel-2 provides a global, freely accessible dataset where four bands are available at a 10-m spatial resolution in the visible and near infrared spectrum. Conversely, WorldView-3 is a commercial satellite where eight bands are available at a 2-m spatial resolution in the visible and near infrared spectrum, but data catalogs are costly and limited in scope. Our optimal WorldView-3 workflow processed images from digital numbers to habitat classification maps, and included a semiautomatic stripe correction. Our comparison of bottom habitat maps explored the impact of improved WorldView-3 spatial resolution in isolation, and the combined advantage of both WorldView’s increased spatial and spectral resolution relative to Sentinel-2. We further explored the effect of tidal height on classification success, and relative changes in water clarity between images collected at different dates. As expected, both sensors are suitable for bottom habitat mapping. The value of WorldView-3 came from both its increased spatial and spectral resolution, particularly for fragmented vegetation, and the value of Sentinel-2 imagery comes from its global dataset that readily allows for large scale habitat mapping. Given the variation in scale, cost and resolution of the two sensors, we provide recommendations on their use for mapping and monitoring marine macrophyte habitat in Atlantic Canada, with potential applications to other coastal areas of the world.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3