Estimation of Above-Ground Biomass of Winter Wheat Based on Consumer-Grade Multi-Spectral UAV

Author:

Wang FalvORCID,Yang Mao,Ma LongfeiORCID,Zhang Tong,Qin Weilong,Li Wei,Zhang YinghuaORCID,Sun Zhencai,Wang Zhimin,Li Fei,Yu KangORCID

Abstract

One of the problems of optical remote sensing of crop above-ground biomass (AGB) is that vegetation indices (VIs) often saturate from the middle to late growth stages. This study focuses on combining VIs acquired by a consumer-grade multiple-spectral UAV and machine learning regression techniques to (i) determine the optimal time window for AGB estimation of winter wheat and to (ii) determine the optimal combination of multi-spectral VIs and regression algorithms. UAV-based multi-spectral data and manually measured AGB of winter wheat, under five nitrogen rates, were obtained from the jointing stage until 25 days after flowering in the growing season 2020/2021. Forty-four multi-spectral VIs were used in the linear regression (LR), partial least squares regression (PLSR), and random forest (RF) models in this study. Results of LR models showed that the heading stage was the most suitable stage for AGB prediction, with R2 values varying from 0.48 to 0.93. Three PLSR models based on different datasets performed differently in estimating AGB in the training dataset (R2 = 0.74~0.92, RMSE = 0.95~2.87 t/ha, MAE = 0.75~2.18 t/ha, and RPD = 2.00~3.67) and validation dataset (R2 = 0.50~0.75, RMSE = 1.56~2.57 t/ha, MAE = 1.44~2.05 t/ha, RPD = 1.45~1.89). Compared with PLSR models, the performance of the RF models was more stable in the prediction of AGB in the training dataset (R2 = 0.95~0.97, RMSE = 0.58~1.08 t/ha, MAE = 0.46~0.89 t/ha, and RPD = 3.95~6.35) and validation dataset (R2 = 0.83~0.93, RMSE = 0.93~2.34 t/ha, MAE = 0.72~2.01 t/ha, RPD = 1.36~3.79). Monitoring AGB prior to flowering was found to be more effective than post-flowering. Moreover, this study demonstrates that it is feasible to estimate AGB for multiple growth stages of winter wheat by combining the optimal VIs and PLSR and RF models, which overcomes the saturation problem of using individual VI-based linear regression models.

Funder

Key Research Projects of Hebei Province

China Agricultural Research System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3