Assessing the Accuracy and Potential for Improvement of the National Land Cover Database’s Tree Canopy Cover Dataset in Urban Areas of the Conterminous United States

Author:

Pourpeikari Heris Mehdi,Bagstad Kenneth J.,Troy Austin R.ORCID,O’Neil-Dunne Jarlath P. M.

Abstract

The National Land Cover Database (NLCD) provides time-series data characterizing the land surface for the United States, including land cover and tree canopy cover (NLCD-TC). NLCD-TC was first published for 2001, followed by versions for 2011 (released in 2016) and 2011 and 2016 (released in 2019). As the only nationwide tree canopy layer, there is value in assessing NLCD-TC accuracy, given the need for cross-city comparisons of urban forest characteristics. Accuracy assessments have only been conducted for the 2001 data and suggest substantial inaccuracies for that dataset in cities. For the most recent NLCD-TC version, we used various datasets that characterize the built environment, weather, and climate to assess their accuracy in different contexts within 27 cities. Overall, NLCD underestimates tree canopy in urban areas by 9.9% when compared to estimates derived from those high-resolution datasets. Underestimation is greater in higher-density urban areas (13.9%) than in suburban areas (11.0%) and undeveloped areas (6.4%). To evaluate how NLCD-TC error in cities could be reduced, we developed a decision tree model that uses various remotely sensed and built-environment datasets such as building footprints, urban morphology types, NDVI (Normalized Difference Vegetation Index), and surface temperature as explanatory variables. This predictive model removes bias and improves the accuracy of NLCD-TC by about 3%. Finally, we show the potential applications of improved urban tree cover data through the examples of ecosystem accounting in Seattle, WA, and Denver, CO. The outputs of rainfall interception and urban heat mitigation models were highly sensitive to the choice of tree cover input data. Corrected data brought results closer to those from high-resolution model runs in all cases, with some variation by city, model, and ecosystem type. This suggests paths forward for improving the quality of urban environmental models that require tree canopy data as a key model input.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3