The Extensive Parameters as a Tool to Monitoring the Volcanic Activity: The Case Study of Vulcano Island (Italy)

Author:

Inguaggiato Salvatore,Vita FabioORCID,Diliberto Iole SerenaORCID,Mazot AgnesORCID,Calderone Lorenzo,Mastrolia Andrea,Corrao MarcoORCID

Abstract

On Vulcano Island (Italy), many geochemical crises have occurred during the last 130 years of solfataric activity. The main crises occurred in 1978–1980, 1988–1991, 1996, 2004–2007, 2009–2010 and the ongoing 2021 anomalous degassing activity. These crises have been characterized by early signals of resuming degassing activity, measurable by the increase of volatiles and energy output emitted from the summit areas of the active cone, and particularly by increases of gas/water ratios in the fumarolic area at the summit. In any case, a direct rather than linear correspondence has been observed among the observed increase in the fluid output, seismic release and ground deformation, and is still a subject of study. We present here the results obtained by the long-term monitoring (over 13 years of observations) of three extensive parameters: the SO2 flux monitored in the volcanic plume, the soil CO2 flux and the local heat flux, monitored in the mild thermal anomaly located to the east of the high-temperature fumarole. The time variations of these parameters showed cyclicity in the volcanic degassing and a general increase in the trend in the last period. In particular, we focused on the changes in the mass and energy output registered in the period of June–December 2021, to offer in near-real-time the first evaluation of the level and duration of the actual exhalative crisis affecting Vulcano Island. In this last event, a clear change in degassing style was recorded for the volatiles emitted by the magma. For example, the flux of diffused CO2 from the soils reached the maximum never-before-recorded value of 34,000 g m−2 d−1 and the flux of SO2 of the plume emitted by the fumarolic field on the summit crater area reached values higher than 200 t d−1. The interpretation of the behavior of this volcanic system, resulting from the detailed analyses of these continuous monitoring data, will complete the framework of observations and help in defining and possibly forecasting the next evolution of the actual exhaling crisis.

Funder

Dipartimento della Protezione Civile Italia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3