Evidence of poro-elastic inflation at the onset of the 2021 Vulcano Island (Italy) unrest

Author:

Stissi Santina Chiara,Currenti Gilda,Cannavò Flavio,Napoli Rosalba

Abstract

Thermal and pore-pressure variations induced by the circulation of hydrothermal-magmatic fluids in porous and permeable media contribute to ground deformation in volcanic areas. Here, we use solutions for the calculation of the displacements induced by pore-pressure and temperature changes for simplified geometry sources embedded in an elastic half-space with homogeneous mechanical and porous properties. The analytical solution for a spherical source is reviewed, and a semi-analytical approach for the calculation of the displacement for a cylindrical source is presented. Both models were used for the inversion of the daily deformation data recorded on Vulcano Island (Italy) during the 2021 unrest. Starting from September 2021, Vulcano Island experienced an increase in gas emission, seismic activity, and edifice inflation. The deformation pattern evolution from September until mid-October 2021 is indicative of a spatially stationary source. The modeling of the persistent and continuous edifice inflation suggests a deformation source located below the La Fossa crater at a depth of approximately 800 m from the ground surface undergoing a volume change of approximately 105 m3, linked to the rise in fluids from a deeper magmatic source. Corroborated by other sources of geophysical and geochemical evidence, the modeling results support that thermo-poro-elastic processes are sufficient to explain the observed displacement without necessarily invoking the migration of magma to shallow levels. Our findings demonstrate that thermo-poro-elastic solutions may help interpret ground deformation and gain insights into the evolution of the hydrothermal systems, providing useful implications for hazard assessment during volcanic crises.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference87 articles.

1. An overview of recent (1988 to 2014) caldera unrest: knowledge and perspectives;Acocella;Rev. Geophys.,2015

2. Mafic magma feeds degassing unrest at Vulcano Island, Italy;Aiuppa;Commun. EARTH Environ.,2022

3. Time-space variation of volcano-seismic events at La Fossa (vulcano, aeolian islands, Italy): new insights into seismic sources in a hydrothermal system;Alparone;Bull. Volcanol.,2010

4. Materiali per un catalogo di eruzioni di Vulcano e di terremoti delle isole Eolie e della Sicilia nordorientale (secc. XV-XIX);Barbano;Quad. Geofis.,2017

5. Deformation of a half‐space from anelastic strain confined in a tetrahedral volume;Barbot;Bull. Seism. Soc. Am.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3